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Abstract. In a previous paper we described a system which recursively

recovers a super-resolved three dimensional surface model from a set of

images of the surface. In that paper we assumed that the camera cali-

bration for each image was known. In this paper we solve two problems.

Firstly, if an estimate of the surface is already known, the problem is to

calibrate a new image relative to the existing surface model. Secondly, if

no surface estimate is available, the relative camera calibration between

the images in the set must be estimated. This will allow an initial surface

model to be estimated. Results of both types of estimation are given.

1 Introduction

In this paper we discuss the problem of camera calibration, estimating the posi-

tion and orientation of the camera that recorded a particular image. This can be

viewed as a parameter estimation problem, where the parameters are the camera

position and orientation. We present two methods of camera calibration, based

on two di�erent views of the problem.

1. Using the entire image I , the parameters are estimated by minimizing (I �

Î(�))2, where � are the camera parameters and Î(�) is the image simulated

from the (known) surface model.

2. Using features extracted from the image, the parameters are estimated by

minimizing (u� û(�))2, where û(�) is the position of the estimated feature

projected into the image plane.

Under the assumption that a surface model is known, the �rst method has a

number of advantages. It makes no assumptions about the size of the displace-

ments between the images; it gives much more accurate estimation as many

thousands of pixels are used to estimate a very few camera parameters; most

fundamentally for our problem, it does not require feature extraction { images of

natural scenes often do not have the sharp corner features required for standard

approaches to camera calibration.

In an earlier paper [1] we described a system that inferred the parameters of

a high resolution triangular mesh model of a surface from multiple images of that

surface. It proceeded by a careful modeling of the image formation process, the

process of rendering, and showed how the rendering process could be linearized
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with respect to the parameters of the mesh (in that case, the height and albedo

values). This linearization turned the highly nonlinear optimization for the mesh

parameters into the tractable solution of a very high dimensional set of sparse

linear equations. These were solved using conjugate gradient, using iterative

linearization about the estimate from the previous iteration.

The work in [1] required that the camera parameters (both internal and ex-

ternal) were known, and also assumed that the lighting parameters were known.

In this paper we continue to assume that the internal parameters are known {

NASA mission sensors are extensively calibrated before launch { and that the

lighting parameters are known. Here we will describe how the linearization of

the rendering process can be performed with respect to the camera parameters,

and hence how the external camera parameters can be estimated by minimizing

the error between the observed and synthesized images. We assume the usual

pinhole camera model [10].

To estimate the camera parameters as described above requires that a surface

model is already available. For the initial set of images of a new region, no surface

model is available. In principle one could optimize simultaneously over both the

surface parameters and the camera parameters. In practice, because the camera

parameters are correlated with all the surface parameters, the sparseness of the

set of equations is destroyed, and the joint solution becomes computationally

infeasible. Instead, for the initial set of images we use the standard approach of

feature matching, and minimize the sum squared error of the distance on the

image plane of the observed feature and the projection of the estimated feature

in 3D.

A surface can be inferred using the camera parameters estimated using fea-

ture matching. New images can then be calibrated relative to this surface esti-

mate, and used in the recursive update procedure described in [1].

2 Calibration by Minimizing the Whole Image Error

Consider a surface where the geometry is modeled by a triangular mesh, and

an albedo value is associated with each vertex of the mesh. A simulated camera

produces an image Î of the mesh. The camera is modeled as a simple pinhole

camera, and its location and orientation is determined by six parameters, its

location in space (xc; yc; zc), the intersection of the camera axis with the x � y

plane, (x0; y0), and the rotation of the camera about the camera axis, �. The

last three of these parameters can be replaced by the three camera orientation

angles, and we will use both representations in di�erent places, depending on

which is more convenient. These parameters are collected into a vector �.

For a given surface, given lighting parameters, and known internal camera

parameters, the image rendered by the synthetic camera is a function of �, ie

Î = Î(�). Making the usual assumption of independent Gaussian errors, and

assuming a uniform prior on �, reduces the maximum likelihood estimation
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problem to a least-squares problem

�̂ = min
�

X
p

(Ip � Îp(�))
2 (1)

where �̂ is the maximum-likelihood estimate of the camera parameters. Because

Î(�) is in general a nonlinear function of �, to make this estimation practical

we linearize Î(�) about the current estimate �0

Î(�) = Î(�0) +Dx; D =
@Îp

@�i

(2)

where D is the matrix of derivatives evaluated at �0, and x = � ��0. This re-

duces the least-squares problem in equation 1 to the minimization of a quadratic

form, F2(x),

F2(x) =
1

2
xDDTxT � bx (3)

b = (I � Î(�))D (4)

which can be solved using conjugate gradient or similar approaches. In the fol-

lowing section we will describe how an object space renderer can also be made

to compute D, the derivatives of the pixel values with respect to the camera

parameters.

2.1 Forming the image

As discussed in [1], to enable a renderer to also compute derivatives it is necessary

that all computations are done in object space. This implies that the light from

a surface triangle, as it is projected into a pixel, contributes to the brightness of

that pixel with a weight proportional to the fraction of the area of the triangle

which projects into that pixel. The total brightness of the pixel is thus the sum of

the contributions from all the triangles whos projection overlaps with the pixel

Îp =
X
4

f
p

4
�4 (5)

where f
p

4
is the fraction of the 
ux that falls into pixel p, and �4 is the total


ux from the triangle. This is given by

�4 = �E(�s) cos�v cos� ��
; (6)

E(�s) = A (Is cos�s + I
a) :

�
 = S=d2:

Here � is an average albedo of the triangular facet. Orientation angles �s and

�v are de�ned in �gure 1. E(�s) is the total radiation 
ux incident on the

triangular facet with areaA. This 
ux is modeled as a sum of two terms. The �rst
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Fig. 1. Geometry of the triangular facet, illumination direction and viewing direction.

ẑs is the vector to the illumination source; ẑv is the viewing direction.

term corresponds to direct radiation with intensity Is from the light source at

in�nity (commonly the sun). The second term corresponds to ambient light with

intensity Ia. The parameter � in equation (6) is the angle between the camera

axis and the viewing direction (the vector from the surface to the camera); � is

the lens fallo� factor.�
 in (6) is the solid angle subtended by the camera which

is determined by the area of the lens S and the distance d from the centroid of

the triangular facet to the camera. If shadows are present on the surface the

situation is somewhat more complex. In this paper we assume that there are no

shadows or occlusions present.

2.2 Computing image derivatives with respect to camera

parameters

Taking derivatives of the pixel intensities in equation 5 gives

@Îp

@�i

=
X
4

 
f
p

4

@�4

@�i

+ �4
@f

p

4

@�i

!
(7)

Consider �rst @�4=@�i. We neglect the derivatives with respect to the fall-

o� angle, as their contribution will be small, and so it is clear from equation 6

that the derivative with respect to any of the camera orientation angles is zero.

The derivative with respect to the camera position parameters is given by

@�4

@�i

/

@

@�i

cos�v (8)

=
n̂

v
(ẑi � ẑv(ẑv :ẑi))
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Fig. 3. Illustration of the geometry for determining the rotation between world and

camera coordinates.

the point �Pi0 that connects two edges of the projected triangle, (Pi2 ;Pi0) and

(Pi0 ;Pi1 ). These triangular edges contain segments (I; J) and (K; L) that are

sides of the corresponding polygon. It can be seen from �gure 2 that when the

point �Pi0 is displaced by � �Pi0 the change in the polygon area is given by the

sum of two terms

� �Apolygon = �AI;J + �AK;L

These terms are equal to the areas spanned by the two corresponding segments

taken with appropriate signs. Therefore the polygon area derivative with respect

to the triangle vertex �Pi0 is represented as a sum of the two \segment area"

derivatives for the 2 segments adjacent to a given vertex. The details of this

computation will be given elsewhere.

We now consider the derivatives of the point positions.

Derivatives of the position of the projection of a point on the image

plane. The pinhole camera model gives

ûl =
[AR(P� t)]l

[R(P� t)]3
(10)

where R is the rotation matrix from world to camera coordinates, t is the trans-

lation of between camera and world coordinates and A is the matrix of camera

internal parameters [13]. In the numerical experiments presented here we assume

that the internal camera parameters are known, and further that the image plane

axes are perpendicular, and that the principle point is at the origin. This reduces

A to a diagonal matrix with elements (k1; k2; 1), where k1 = �f=lx, k2 = �f=ly.

Where f is the focal length of the lens and lx and ly are the dimensions of the

pixels in the retinal plane.

The rotation matrix R can be written in terms of the Rodrigues vector [10]

% = (%1; %2; %3) which de�nes the axis of rotation, and � = j%j is the magnitude

of the rotation. (Clearly % can be written in terms of the camera position, the
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look-at point and the view-up vector.)

R = I�H

sin �

�
+H

2
(1� cos �)

�2
(11)

where

H =

0
@ 0 �%3 %2

%3 0 �%1
�%2 %1 0

1
A : (12)

Let H = H=� and ri = ri=� then

@R

@%i
= �Hi

sin �

�
+ (HHi +HiH)

(1� cos �)

�
�H

�
cos � �

sin �

�

�
ri (13)

+H2

�
sin � � 2

1� cos �

�

�
ri

where Hi = @H=@%i. Then

@ûl

@%i
=

0
@
h
A@R

@%i
(P� t)

i
l

[R(P� t)]3
�

[AR(P� t)]l

h
@R
@%i

(P� t)
i
3

([R(P� t)]3)2

1
A (14)

The derivatives with respect to the position parameters are

@ûl

@tj
=

[AR(P� t)]l[R]3;j

([R(P� t)]3)2
�

[AR]l;j

[R(P� t)]3
(15)

In practice, optimization using the camera orientation angles directly is inad-

visable, as a small change in the angle can move the surface a long distance in

the image, and because the minimization in equation 1 is based on a sum over

all pixels in the image, this can make for rapid changes in the cost, and failure

to converge. Instead we use the \look-at" point (x0; y0) which is in the natural

length units of the problem. The conversion of the derivatives from angles to

look-at is an application of the chain rule, and is not detailed here.

We now consider the second problem, calibration using features detected in

the images.

3 Calibration by Minimizing Feature Matching Error

It is well known that camera calibration can be performed using corresponding

features in two or more images [4]. This estimation procedure also returns the

3D positions of the corresponding image features. So the parameter space is

augmented from �f (where f indexes the frame, or camera parameter set) with

Pn, the positions of the 3D points.

If it is assumed that the error between uf
n
, the feature located in image f

corresponding to 3D point Pn, and û
f

n
, the projection of Pn into image f using



8

Fig. 4. Four synthetic images of an area of Death Valley

camera parameters �f , is normally distributed, then the negative log-likelihood

for estimating � and P is

L(�;P) =

KX
f=1

X
n2
f

2X
l=1

(u
f

l;n
� û

f

l;n
)2 (16)

P = fPn; n = 1 : : :Ng (17)

� = f�
f

i
: i = 1 : : : 6; f = 1 : : :Kg (18)

where 
f is the set of features that are detected in image f . Note that the

features detected in a given image may well be a subset of all the Pn's. l indexes

the components of u. This form of the likelihood assumes that there is no error

in the location of the features in the images.

Typically the non-linear likelihood in equation 18 is minimized using a stan-

dard non-linear minimization routine, for example the Levenberg-Marquardt al-

gorithm [11]. The dimensionality of the parameter space in equation 18 is large,

equal to 6� (the number of images -1) + 3� the number of 3D points -1, where

the parameters of the reference camera are not included, and the overall spatial

scale is arbitrary. In general there will be many points, because of this large di-

mensionality it is important to use exact derivatives, to avoid slow convergence
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and reduce the need for good initialization. In section 3.2 below we derive the

analytic derivatives of the likelihood function, enabling this robust convergence.

The other practical problem in using feature-based camera calibration is the

detection and matching of image features.

3.1 Robust feature matching

The maximum likelihood solution to the camera parameter estimation problem

is known to be extremely sensitive both to mismatches in the feature correspon-

dences, and to even small errors in the localization of the detected features. To

reliably estimate the camera parameters we need reliably located features, reli-

ably matched. More accurate estimation results from using a smaller set of well

localized and well matched features, than a much larger set that includes even

a single outlier. Extreme conservatism in both feature detection and matching

is needed.

The feature detector most commonly used is the Harris corner detector [2].

This feature detector was developed in the context of images of man-made envi-

ronments, which contain many strong corners. Remote sensed images of natural

scenes of the type we are concerned with (see �gure 4) contain some, but much

fewer, strong corner features. If the \feature strength" given by the Harris detec-

tor is plotted for the features detected on the images in �gure 4, it can be seen

to fall o� rapidly { see �gure 5. For this type of image, it is therefore necessary

to use only a small number of features, where the associated feature strength is

high enough to ensure accurate feature localization. This is a limiting factor in

the use of feature based calibration for this type of images, and a motivation for

developing the whole image approach described above. Feature detectors more

suited to natural scenes are clearly needed, but there will always be particularly

mute environments where feature based methods will fail.

Because of the extreme sensitivity to mismatches, it it necessary to ensure

that the features found are matched reliably. This is a classic chicken-and-egg
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problem: to determine reliable matches it is necessary to correctly estimate the

camera parameters, and to correctly estimate the camera parameters requires

reliable matches. For this reason, feature matching has spawned a number of

methods based on robust estimation (and one approach which attempts to do

away with explicit feature matching altogether [12]).

The RANSAC algorithm [3] �nds the largest set of points consistent with a

solution based on a minimal set, repeatedly generating trial minimal sets until

the concensus set is large enough. Zhang [4] also bases his algorithm on esti-

mation using minimal sets, but uses LMedS (Least Median Squares) to select

the optimal minimal set. The estimate of the fundamental matrix [10] generated

using that minimal set is used to reject outliers. Zhang also applies a relaxation

scheme to disambiguate potential matches. This is a formalization of the heuris-

tic that features nearby in one image are likely be close together in another

image, and in the same relative orientation. In our work we use a modi�ca-

tion of Zhang's algorithm described below. Torr and co-workers have developed

MLESAC [7] and IMPSAC [6] as improvements on RANSAC. IMPSAC uses a

multiresolution framework, and propagates the probability density of the camera

parameters between levels using importance sampling. This achieves excellent re-

sults, but was considered excessive for our application, where prior knowledge

of the types of camera motion between frames is known.

Our algorithm proceeds as follows:

1. Use the Harris corner detector to identify features, rejecting those which

have feature strength too low to be considered reliable.

2. Generate potential matches using the normalized correlation score between

windows centered at each feature point. Use a high threshold (we use t = 0:9)

to limit the number of incorrect matches.

3. Use LMedS to obtain a robust estimate of the fundamental matrix:

{ Generate an 8 point subsample from the set of potential matches, where

the 8 points are selected to be widely dispersed in the image (see [4]).

{ Estimate the fundamental matrix. Zhang uses a nonlinear optimization

based approach. We have found that the simple eight point algorithm [9]

is suitable, because our features are in image plane coordinates, which

correspond closely to the normalization suggested in [8].

{ Compute the residuals, uTFu for all the potential matches, and store

the median residual value.

{ Repeat for a new subsample. The number of subsamples required to

ensure with a su�ciently high probability that a subset with no outliers

has been generated depends on the number of features and the estimated

probability that each potential match is an outlier.

{ Identify Fmin as the fundamental matrix which resulted in the lowest

median residual value.

4. Use Fmin to reject outliers by eliminating matches which have residuals

greater than a threshold value. (We used tmin = 1:0 pixels.)

5. Use the following heuristic to eliminate any remaining outliers: because the

images are remote sensed images, the variations in heights on the surface
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are small in comparison to the distance to the camera. So points on the

surface that are close together should move similar amounts, and in similar

directions1. The heuristic is

{ Consider all features within a radius r = 0:2 of the image size from the

current feature. The match found for that feature is accepted if both of

the following conditions hold:

(a) The length of the vector between the features is less than a thresh-

old times the length of the largest vector between features in the

neighbourhood.

(b) The average distance between neighbouring features in one image is

less than a threshold times the average distance between the same

features in th second image.

In both cases the threshold used was 1:3.

Features are matches between all pairs of images in the set, and are used in the

likelihood minimization (18) to estimate the camera parameters. Note that not

all features will be detected in all the images in a set, so the likelihood will only

contain terms for the features actually found in that image.

3.2 Computing derivatives of the feature positions

To e�ectively minimize L(�;P) in equation 18 we need to compute its deriva-

tives, which reduces to computing
@û

f

l;n

@�
f

i

and
@û

f

l;n

@Pn

. In what follows we will con-

centrate on one frame and drop the f index.

We have already shown in equation 14 the expression for the derivative of the

point position with respect to the rotation angles and camera position, which

together make up
@û

f

l;n

@�
f

i

. It remains only to give the expression for the derivative

with respect to the 3D feature point. This is the same as the derivative with

respect to the camera position, see equation 15, but with the sign reversed,

giving
@ûl;n

@{n;j
= �

[AR(Pn � t)]l[R]3;j

([R(Pn � t)]3)2
+

[AR]l;j

[R(Pn � t)]3
(19)

Where the subscript n indexes the features.

4 Results and conclusions

Figure 4 shows four synthetic images of Death Valley. The images were generated

by rendering a surface model from four di�erent viewpoints and with di�erent

lighting parameters. The surface model was generated by using the USGS Digital

Elevation Model of the area for the heights, and using scaled intensities of a

1 This is not true if the camera moves towards the surface, but even then, if the

movement towards the surface is not excessive, this heuristic still approximately

holds.
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Fig. 6. Features found in image 0

LANDSAT image as surrogate albedos. The size of the surface was approximately

350� 350 points, and the distance between grid points was taken as 1 unit. The

images look extremely realistic.

Table 1 shows the results of estimating the camera parameters using features

detected in the images. These estimates are good, but far from exact. Considering

the images in �gure 4, it is clear that there are few strong corner features. Figure

6 shows the set of strong features detected in image 0 (the top left image in �gure

4). Two things are apparent. Firstly, the features are all due to rapid changes in

albedo. Secondly, with two exceptions, the features are clustered. This clustering

reduces the accuracy of the estimation. That the features are mostly albedo

features con�rms that feature based approaches are not applicable to many of

the types of image we are interested in.

Table 1 also shows the results for calibration using matching to a pre-existing

3D surface model. The estimation was initialized at the results of the point-

matching estimation. The minimization of (I� Î(�))2 was performed iteratively,

re-rendering to compute a new Î at the value of � at the convergence of the

previous minimization. As expected, the estimates are very signi�cantly better

than the results from point matching, and are very accurate. However, these

results are predicated on the existence of a surface model.

These results suggest an approach to camera calibration that is the subject

of our current, ongoing, research. Point matching can be used to estimate initial

camera parameters, and a very sparse surface representation. A dense surface

(shape and albedo) can then be inferred using these camera parameters (see

[1]). The whole-image matching approach can be used to re-estimate the camera

parameters, and a new surface estimate can be made using the new camera pa-
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true point-match estimate whole-image estimate

camera (700; 1416; 4000) (610; 1410; 4030) (685; 1409; 4001)

image 1 look at (205; 1416; 0) 205; 1420; 0) (205; 1416; 0)

view up (0; 1; 0) (�0:005; 1; 0; 002) (0; 1:0; 0:002)

camera (200; 900; 4000) (200; 968; 4050) (203; 894; 3996)

image 2 look at (205; 1416; 0) (206; 1410; 0) (205; 1416; 0)

view up (0; 1; 0) (�0:015; 0:994; 0:11) (0; 0:993; 0:129)

camera (200; 1900; 4000) (176; 1780; 4030) (196; 1881; 4001)

image 3 look at (205; 1416; 0) (206; 1420; 0) (205; 1416; 0)

view up (0; 1; 0) (�0:007; 0:996;�0:090) (0; 0:993;�0:116)

Table 1. Results for camera parameter inference. Image 0 was the reference image

with parameters camera { (�300; 1416; 4000), look at { (205; 1416; 0) and view up {

(0; 1; 0)

.

rameter estimates. This process can be iterated. The convergence of this iterative

procedure is currently being studied.
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